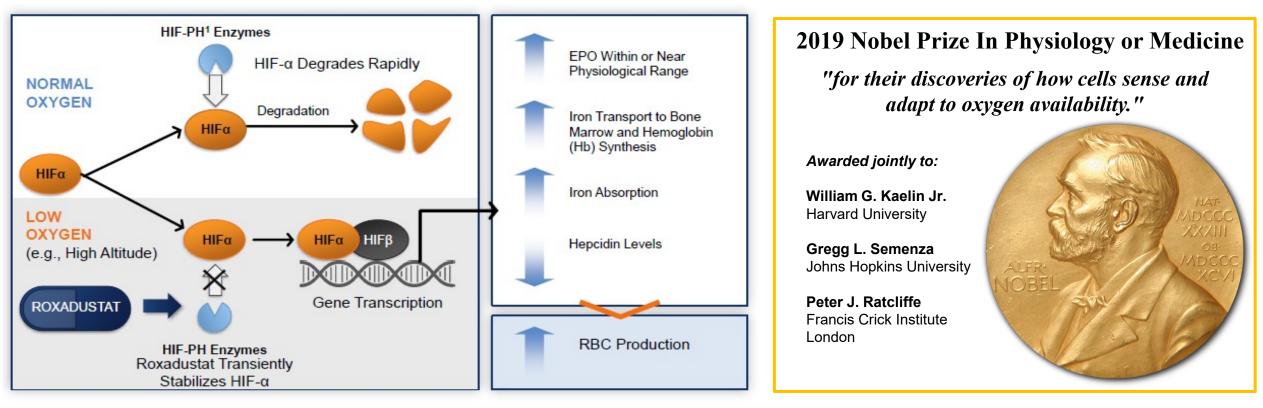
Pooled Efficacy and CV Safety Results of Roxadustat in the Treatment of Anemia in Chronic Kidney Disease (CKD) Patients On and Not on Dialysis

<u>Robert Provenzano</u>,¹ Steven Fishbane,² Lee-Jen Wei,³ Lynda Szczech,⁴ Robert Leong,⁴ Khalil G. Saikali,⁴ Ming Zhong,⁴ Tyson T. Lee,⁴ Mark T. Houser,⁵ Lars Frison,⁵ John Houghton,⁵ Kin-Hung Peony Yu,⁴ Thomas B. Neff⁴

¹Wayne State University, Detroit, MI, USA; ² Northwell Health, Commack, NY, USA;
 ³Harvard University, Boston, MA, USA; ⁴FibroGen, Inc., San Francisco, CA, USA;
 ⁵AstraZeneca, Gaithersburg, MD, USA; ⁶AstraZeneca, Mölndal, Sweden

*Contributed equally

Disclosures


Robert Provenzano:

Vice President of Medical Affairs for DaVita. Board of Directors for Nephroceuticals and Vasc-Alert

Study funding: FibroGen, AstraZeneca, and Astellas

Roxadustat: Novel, First-in-class Treatment for CKD Anemia

- Roxadustat oral hypoxia-inducible factor prolyl hydroxylase inhibitor (HIF-PHI)
 - 2019 Nobel Prize winning science is the foundation of roxadustat
 - Increases hemoglobin (Hb) by mimicking the body's natural response to low oxygen
 - Studied for treatment of anemia in Stage 3 to 5 CKD patients, both on and not on dialysis
 - Approved in China: (dialysis 12/2018, not on dialysis 8/2019) and Japan: (on dialysis 9/2019)

¹hypoxia-inducible factor prolyl hydroxylase (HIF-PH)

Roxadustat Global Phase 3 Studies Efficacy and Pooled Cardiovascular Safety Endpoints

- Study populations: broad range of CKD patients, reflective of intended treatment population
 - Non-dialysis-dependent (NDD) CKD pool: placebo comparator
 - Dialysis dependent (DD) CKD pool: epoetin alfa comparator
 - Incident dialysis (ID) pool: clinically important subgroup of DD pool
- Efficacy endpoints:
 - Primary efficacy endpoint in individual studies and pooled analyses
 - Pooled efficacy results: potential clinical benefits differentiated from current SOC
- Safety:
 - Cardiovascular (CV) safety endpoints in NDD pool and in DD pool
 - Other safety findings have been summarized in individual study presentations in other sessions
- 4 CKD, chronic kidney disease; SOC, standard of care

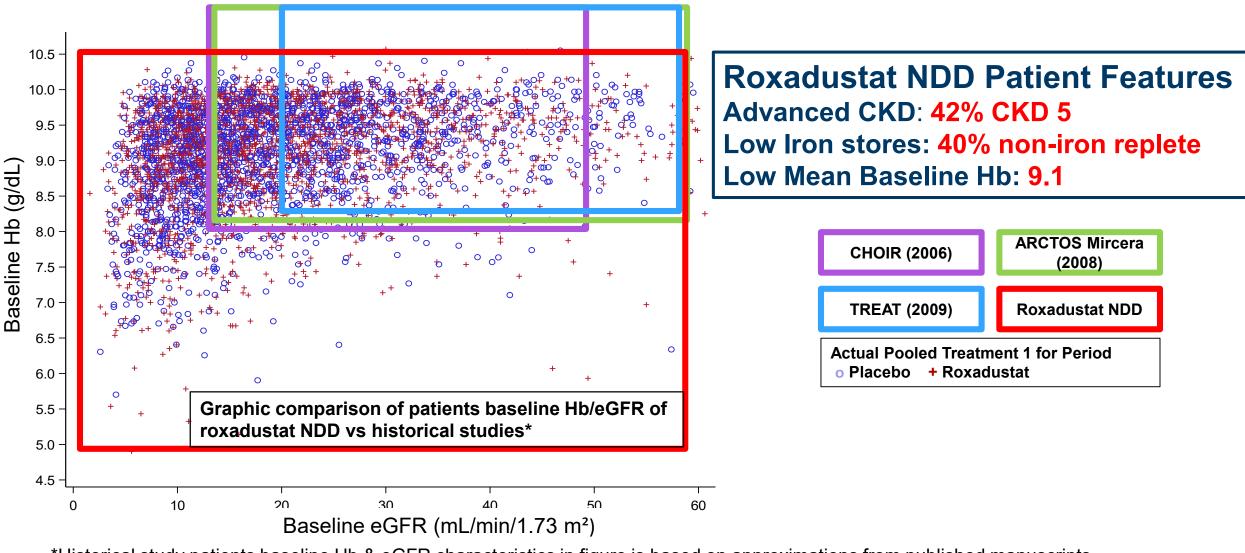
Roxadustat NDD and DD Program

Phase 3 CKD non-dialysis-dependent (NDD) Pool				
D5740C00001	FGCL-4592-060	1517-CL-0608	NDD Pooled	
OLYMPUS	ANDES	ALPS		
AstraZeneca	FibroGen	Astellas	Roxa	Placebo
N=2761	N=922	N=594	N=2391	N=1886
R 1:1	R 2:1	R 2:1	1.62 Avg PEY	1.23 Avg PEY

Number of patients: 4277 Patient exposure years: 6194

Phase 3 CKD dialysis-dependent (DD) Pool				
D5740C00002	FGCL-4592-064	FGCL-4592-063	ם חח	aalad
ROCKIES	SIERRAS	HIMALAYAS	DD P	ooled
AstraZeneca	FibroGen	FibroGen	Roxa	EPO
Global	US only	Global		
N=2106	N=741	N=1043	N=1943	N=1947
R 1:1	R 1:1	R 1:1		
Correction & maintenance Early & Stable DD	Maintenance Early & Stable DD	Correction DD Vintage<4mos Only (Early)	1.71 Avg PEY	1.92 Avg PEY

Number of patients: 3880 Patient exposure years: 7059


5 EPO, epoetin alfa; Hb, hemoglobin; PEY, patient exposure year; R, Randomization; Roxa, roxadustat

Roxadustat NDD Program: Inclusive of Patients Not Studied in Prior CKD Anemia Trials

NDD Population	Roxadustat (N=2391)	Placebo (N=1886)			
Age (years) mean (SD)	61.9 (14.1)	62.7 (14.0)			
CKD etiology, n (%					
Diabetic nephropathy	1082 (45.3)	834 (44.2)			
Hypertensive nephropathy	585 (24.5)	381 (20.2)			
Other	896 (37.5)	758 (40.2)			
Medical history, n (%	%)				
Cardiac, cerebrovascular, or thromboembolic disease*	886 (37.1)	695 (36.9)			
Diabetes, n (%)	1337 (55.9)	1096 (58.1)			
Baseline eGFR (ml/min/1	.73 m²)				
Mean (SD)	19.72 (11.56)	20.04 (11.76)			
Median (min–max)	16.90 (1.6–68.2)	17.01 (2.6–75.2)			
<10, n (%)	481 (20.1)	359 (19.0)			
10 – <15, n (%)	526 (22.0)	452 (24.0)			
15 – <30, n (%)	954 (39.9)	724 (38.4)			
≥30, n (%)	430 (18.0)	351 (18.6)			
Baseline Hb (g/dL)					
Mean (SD)	9.10 (0.74)	9.10 (0.73)			
Median (Min–Max)	9.23 (4.9–11.6)	9.25 (5.7–10.6)			
Iron repletion status at baseline, n (%)					
TSAT <20% or ferritin <100 ng/mL, n (%) non-replete	956 (40.0)	755 (40.0)			
TSAT ≥20% and ferritin ≥100 ng/mL, n (%) replete	1433 (59.9)	1127 (59.8)			

*History of any of the following: myocardial infarction, percutaneous coronary intervention, coronary artery bypass, congestive cardiac failure, ischemic
6 stroke, hemorrhagic stroke, cerebrovascular incident. eGFR, estimated glomerular filtration rate; SD, standard deviation; TSAT, transferrin saturation

Roxadustat NDD Program: Evaluation of Anemia Therapy In A Broad Range of Patients Not Included In Prior CKD Anemia Trials

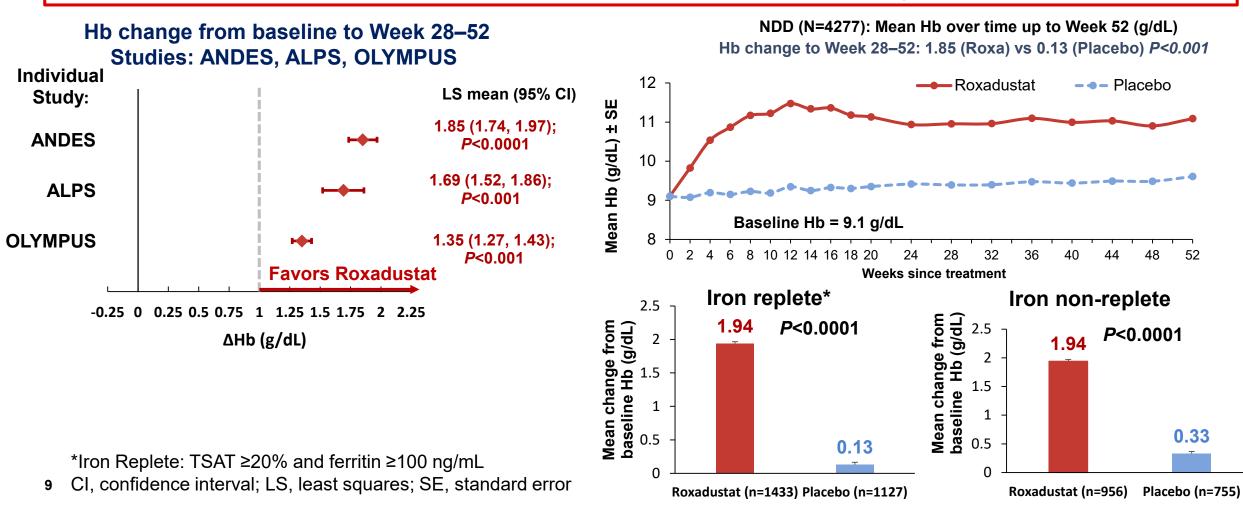
*Historical study patients baseline Hb & eGFR characteristics in figure is based on approximations from published manuscripts 7 eGFR, estimated glomerular filtration rate

DD Demographics and Baseline Characteristics

DD Population	Roxadustat (N=1929)	Epoetin Alfa (N=1928)	DD Population	Roxadustat (N=1929)	Epoetin Alfa (N=1928)	
Age (years)			Medical history, n (%)			
Mean (SD)	54.3 (14.88)	55.1 (14.61)	Cardiac, cerebrovascular or	940 (48.7)	923 (47.9)	
Median (min, max)	56.0 (18, 93)	57.0 (18, 94)	thromboembolic disease*	940 (40.7)	923 (47.9)	
Gender, n (%)			Diabetes	906 (47.0)	905 (46.9)	
Male	1113 (57.7)	1136 (58.9)	Dialysis modality, n (%)			
Female	816 (42.3)	792 (41.1)	Hemodialysis	1750 (90.7)	1740 (90.2)	
Race group, n (%)			Peritoneal dialysis	177 (9.2)	188 (9.8)	
Asian	269 (13.9)	260 (13.5)	Dialysis Vintage <4months	760 (39.4)	770 (39.9)	
Black	348 (18.0)	363 (18.8)	Baseline Hb (g/dL)			
White	1171 (60.7)	1170 (60.7)	Mean (SD)	9.63 (1.30)	9.67 (1.30)	
Other	141 (7.3)	135 (7.0)	Median (min, max)	9.80 (4.3, 12.0)	9.83 (5.0, 12.2)	
Region, n (%)			<10	1079 (55.9)	1045 (54.2)	
US	874 (45.3)	879 (45.6)	≥10	850 (44.1)	883 (45.8)	
Europe	651 (33.7)	651 (33.8)	Baseline ferritin (ng/ml)			
Other	404 (20.9)	398 (20.6)	Mean (SD)	608.6 (466.5)	602.2 (469.6)	
			Baseline TSAT (%)			
			Mean (SD)	33.0 (12.74)	32.7 (12.4)	

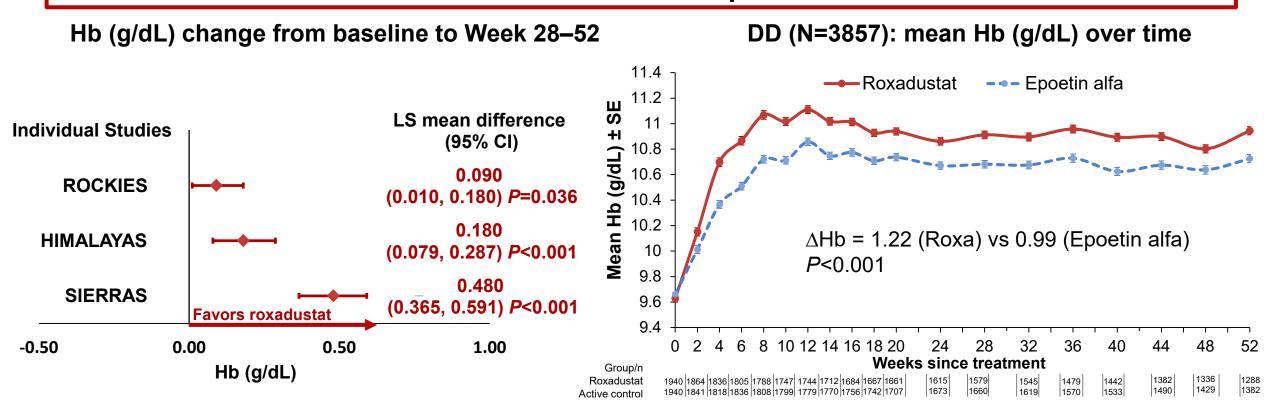
*History of any of the following: myocardial infarction, percutaneous coronary intervention, coronary artery bypass, congestive cardiac

Median (min, max)


31.0 (4.0, 87.0)

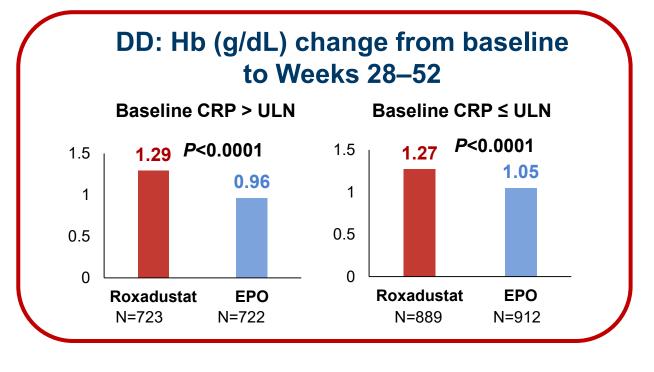
30.5 (5.0, 88.0)

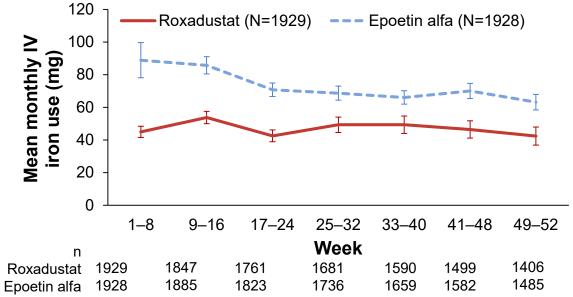
8 failure, ischemic stroke, hemorrhagic stroke, cerebrovascular incident. mo, month


NDD Efficacy: Met Primary Efficacy Endpoint Roxadustat is superior to placebo, regardless of iron-repletion

Primary efficacy endpoint (change in Hb from baseline to Hb averaged over Weeks 28–52) was met in individual studies and pooled analyses

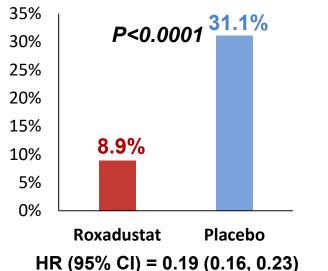
DD: Roxadustat Efficacious, Larger Hb Increase Than EPO in Individual Studies & In Pooled Analysis

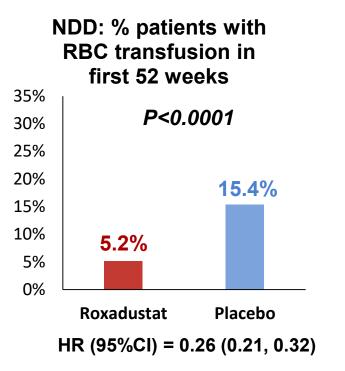

Primary efficacy endpoint (change in Hb from baseline to Hb averaged over Weeks 28 to 52): Roxadustat achieved larger Hb increase over epoetin alfa in individual studies & in pooled DD


10 CRP, C-reactive protein; EPO, epoetin alfa

DD: Roxadustat Efficacious Regardless of Inflammation, Less IV iron requirement than Epoetin Alfa

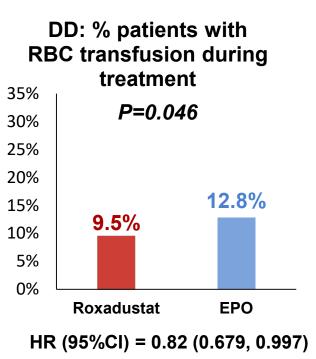
- Roxadustat achieved higher Hb increase in patients with inflammation (CRP > ULN) and in patients without inflammation (CRP ≤ ULN), compared to epoetin alfa
- Less IV iron was required in roxadustat patients than in patients on epoetin alfa

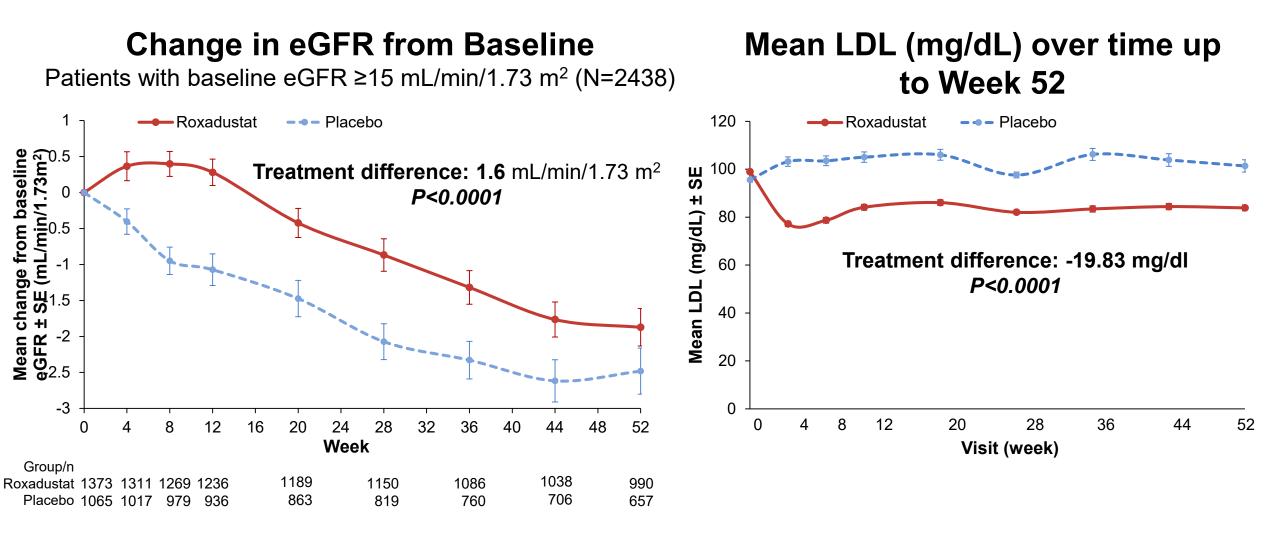

DD: Less Monthly IV Iron Use in Roxadustat Patients Than in Epoetin Alfa Patients



Roxadustat Lowers Use of Rescue* Therapies in NDD; Reduction in RBC Transfusion in NDD (vs Placebo) and in DD (vs Epoetin Alfa)

NDD: Rescue Use


NDD: % patients with rescue use in first 52 weeks


NDD: RBC Transfusion

DD: RBC Transfusion

*Rescue = RBC transfusion, ESA, or IV iron 12 HR, hazard ratio; RBC, red blood cell

Roxadustat Potential Additional Benefits in NDD

13 LDL, low-density lipoprotein

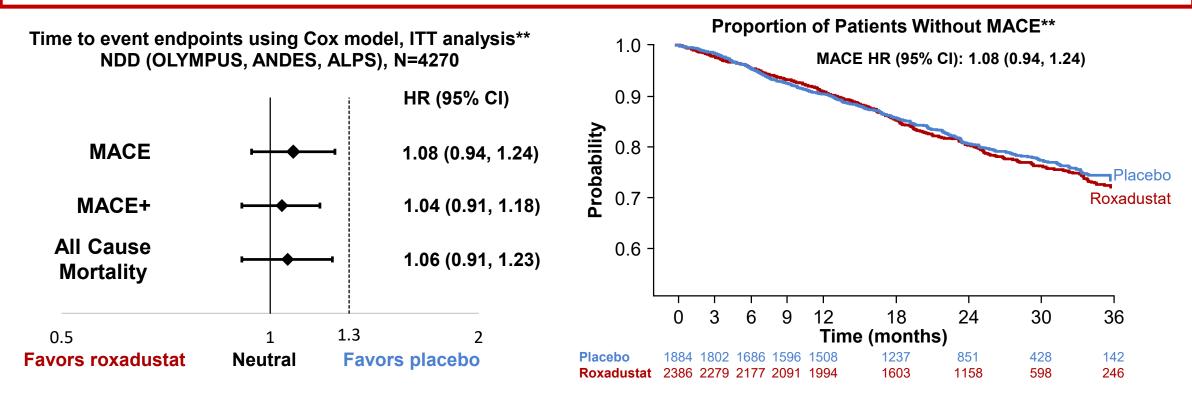
Cardiovascular Safety Endpoint Pooled Analyses

- Cardiovascular (CV) safety endpoints analyzed in NDD pool and in DD pool
- Key safety endpoints:

Time to first MACE

 MACE (Major Adverse Cardiovascular Events) include: all-cause mortality, myocardial infarction, and stroke

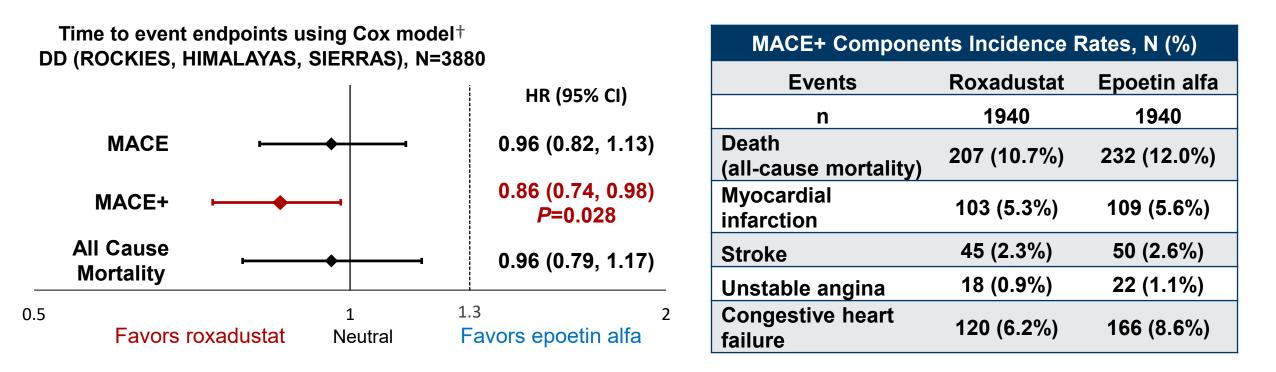
– Time to first MACE+


• MACE+ include MACE, unstable angina requiring hospitalization, and congestive heart failure requiring hospitalization

- Time to all-cause mortality

 CV events were centrally adjudicated by independent experts blinded to treatment assignment

NDD Pool: Cardiovascular Safety Endpoints MACE, MACE+, All-cause Mortality


Risks of MACE, MACE+, or all-cause mortality in roxadustat patients were comparable to placebo in NDD patients*

*"comparable" based on hazard ratio (HR) upper bound of 95% confidence interval (95%CI) below reference non-inferiority margin of 1.3
 **ITT analysis = Intent to treat analysis evaluation period to include on-treatment and off-treatment long term follow-up, until end of study

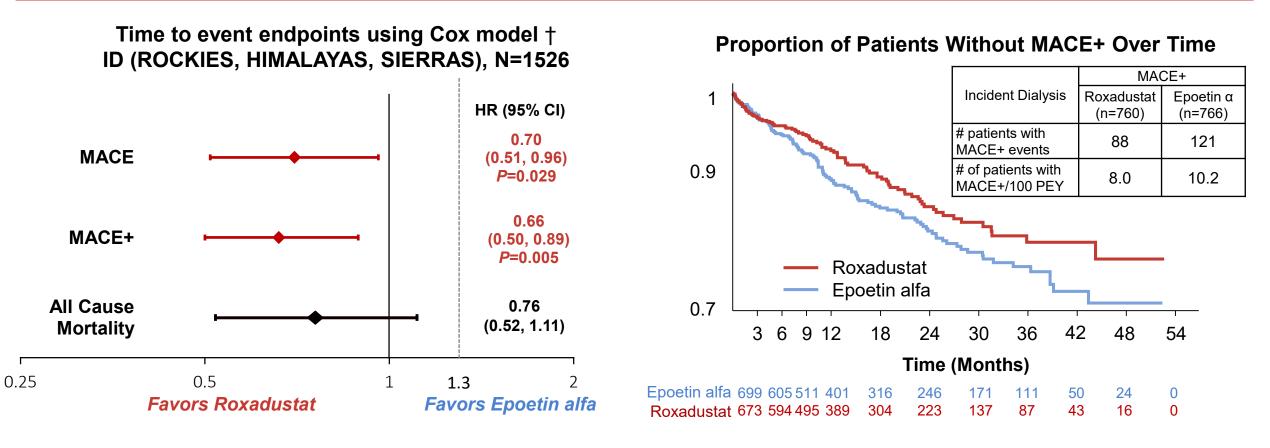
DD Pooled: Cardiovascular Safety Endpoints

- Risk of MACE and all-cause mortality in roxadustat patients were not increased compared to epoetin alfa in DD patients*
- Roxadustat patients had a lower risk of MACE+ than epoetin alfa patients

*"risk not increased" based on hazard ratio (HR) upper bound of 95% confidence interval (95%CI) below reference non-inferiority margin of 1.3.
16 †On-treatment analysis

Incident Dialysis (ID) Patients: A Large, Clinically Important Subgroup of Dialysis-dependent Patients

- Patients typically start anemia therapy at start of dialysis
- A clinically relevant comparison between roxadustat & EPO
- Represents the highest risk population of patients on dialysis


ID Population	HIMALAYAS	SIERRAS (ID	ROCKIES (ID	ID Pool N=1530	
Fopulation	All ID	Subgroup)	Subgroup)	Roxa	EPO
Number of subjects	1043	71	416	760	770
Patient exposure years	1842	45	401	1098	1190

Demographic and Baseline Characteristics

ID Population	Roxadustat (N=760)	Epoetin α (N=770)
Age (years)		
Median (min, max)	55.0 (18, 87)	55.0 (18, 92)
Race group, n (%)		
Asian	116 (15.3)	127 (16.5)
Black	67 (8.8)	67 (8.7)
White	508 (66.8)	505 (65.6)
Other	69 (9.1)	71 (9.2)
Baseline Hb (g/dL)		
Mean (SD)	8.8 (1.2)	8.9 (1.2)
Median (min, max)	8.9 (5.3, 12.0)	8.87 (5.0, 12.0)
<10 g/dL, n (%)	647 (85.1)	655 (85.1)
≥10 g/dL, n (%)	113 (14.9)	115 (14.9)

Incident Dialysis Pool: Cardiovascular Safety Endpoints

Roxadustat had 30% lower risk of MACE and 34% lower risk of MACE+ than epoetin alfa* and with a trend towards lower all-cause mortality relative to epoetin alfa, in incident dialysis patients

18 *Lower MACE & MACE+ risks – based on the HR upperbound of 95% confidence interval below 1.0. †On-treatment analysis

Conclusions: Efficacy

Roxadustat efficacy was demonstrated

Achieved primary efficacy endpoint (change in Hb) in individual studies and pooled analyses

- NDD: roxadustat was superior to placebo and efficacious regardless of iron-repletion
- **DD:** roxadustat achieved larger mean Hb increase than epoetin alfa, especially in inflamed patients, and less IV iron was required in roxadustat arm than in epoetin alfa.

Lower RBC transfusion risk

- NDD: In roxadustat patients compared with placebo
- **DD:** In roxadustat patients compared with epoetin alfa

- Other potential benefits in NDD

- Reduced LDL cholesterol
- Less decline in eGFR

Conclusions: *Roxadustat CV Safety*

CV safety was demonstrated in all study populations

- Non-dialysis: Risk of MACE, MACE+, and all-cause mortality in roxadustat patients were comparable to placebo in NDD patients
- Incident dialysis: Roxadustat had 30% lower risk of MACE and 34% lower risk of MACE+ than epoetin alfa, and with a trend towards lower all-cause mortality relative to epoetin alfa
- Dialysis-dependent:
 - Roxadustat patients had a lower risk of MACE+ than epoetin alfa patients
 - Risk of MACE and all-cause mortality in roxadustat patients were not increased compared to epoetin alfa in DD patients

In Memory Of Thomas B. Neff

- Founder, CEO and Chairman of the Board of FibroGen, Inc. (1995–Aug 25, 2019)
- Inventor and champion for selection of CKD anemia as first clinical application of HIF science (oxygen sensing and biology of adaption to hypoxia)
- Leader for development of roxadustat (HIF-PHI) for the treatment of CKD anemia

Thank You

To the many contributors who made Roxadustat clinical studies possible

- Study patients & family
- Investigators & research staff
- Expert Advisors
- DSMB members
- CV safety endpoint adjudication team
- Reviewers at health authorities around the world

- IRB Members
- Clinical research organizations
- Academic research collaborators
- Funders of Roxadustat R&D
- FibroGen, AstraZeneca, & Astellas employees & family
- Supporters of the Roxadustat Project